开篇之前,我们先摆个模型,导体中的电流以及回流会一句频率大小而进行不同的分布,请看下图:
从上图中我们看出,低频满地跑,因此如果我们需要屏蔽,那么就要屏蔽很宽的面积,将回流区域都覆盖,高频的回流区域非常小,因此需要控制的区域就非常小。
试想,假如在高频回流的地方(GND或者VDD)平面引一个长长的地线出来,并且PCB平面对引出的线屏蔽效能不够,这样这个引线就具有很高的辐射效率了。
对于低频,为什么要单点接地,其原因非常多,一来要控制本身回流路径,二来也要防止数字噪声通过地上公共阻抗侵入,影响性能。
【现象描述】
本项目中,在进行RE102测试中,频段200MHz~1GHz中200多MHz单点超标,且高频有杂散单点较高,其数据见下图:
【原因分析】
快速定位:产品为铁壳产品,在实验室现场拉出了很多线缆,将线缆逐个拔插,发现干扰来自于DVI线缆,将DVI线缆扣磁环,接口处接地加屏蔽,发现低频的200多MHz下去了,中部的去上去了,也超标了,这是为什么,请看下图:
深入研究:从以上措施我们看到,每当我们接地不管多么近都会有不同但类似的频点超标,跟磁环没多大关系,不管加不加。
种种迹象表明我们还有其他的噪声产生源头没有找到,于是我们将机器拆开,专门研究线缆这边到底有没有接地好,我们终于找到原因,接地处线缆的外部屏蔽层在从机器出现的地方隔离着塑料塞子。将塞子去掉或者包上导电布,RE辐射立即OK了,请看下图:
【整改方案】
综合产品防水要求,塞子不能去掉,因此要将塞子做成导电的塑胶塞子。本方案无需改版,只需要更改塑料塞子材料即可,对其他性能毫无影响。
随便说两句
塞子的模型就想PCB一样,回流路径上开了一个大缝隙,塞子补上或者PCB裂缝补上,回流连续。另外我们这里也可以考虑一下天线的相位问题,两点接在一起,电位相位相同,没有电力线,因此也没有电磁场,当然就没有电磁波。
EMC整改小技巧:
差模干扰与共模干扰
差模干扰:存在于L-N线之间,电流从L进入,流过整流二极管正极,再流经负载,通过热地,到整流二极管,再回到N,在这条通路上,有高速开关的大功率器件,有反向恢复时间极短的二极管,这些器件产生的高频干扰,都会从整条回路流过,从而被接收机检测到,导致传导超标。共模干扰:共模干扰是因为大地与设备电缆之间存在寄生电容,高频干扰噪声会通过该寄生电容,在大地与电缆之间产生共模电流,从而导致共模干扰。下图为差模干扰引起的传导FALL数据,该测试数据前端超标,为差模干扰引起:
图中CX2001为安规薄膜电容(当电容被击穿或损坏时,表现为开路)其跨在L线与N线之间,当L-N之间的电流,流经负载时,会将高频杂波带到回路当中。此时X电容的作用就是在负载与X电容之间形成一条回路,使的高频分流,在该回路中消耗掉,而不会进入市电,即通过电容的短路交流电让干扰有回路不串到外部。2. 增大共模电感感量,利用其漏感,抑制差模噪声(因为共模电感几种绕线方式,双线并绕或双线分开绕制,不管哪种绕法,由于绕制不紧密,线长等的差异,肯定会出现漏磁现象,即一边线圈产生的磁力线不能完全通过另一线圈,这使得L-N线之间有感应电动势,相当于在L-N之间串联了一个电感)电源线缆与大地之间的寄生电容,使得共模干扰有了回路,干扰噪声通过该电容,流向大地,在LISN-线缆-寄生电容-地之间形成共模干扰电流,从而被接收机检测到,导致传导超标(这也可以解释为什么有的主板传导测试时,不接地通过,一夹地线就超标。USB模式下不接地时,电流回路只能通过L-二极管-负载-热地-二极管-N,共模电流不能回到LISN,LISN检测到的噪声较小,而当主板的冷地与大地直接相连时,线缆与大地之间有了回路,此时若共模噪声未被前端LC滤波电路吸收的话,就会导致传导超标)2. 调整L-GND,N-GND上的LC滤波器,滤掉共模噪声3. 主板尽可能接地,减小对地阻抗,从而减小线缆与大地的寄生电容。EMC寄语:随着时代的发展,越来越多的电子、电气设备或系统产品都需要进行检验检测,其中EMC测试是必备的检验检测指标之一。但EMC测试项目费用较贵,EMC实验室造价昂贵,绝大部分测量设备又需要采用进口设备,导致很少检验检测机构有能力建造EMC实验室。产品的EMC性能是设计阶段赋予的,一般电子产品设计时如果不考虑EMC因素,就会很容易导致EMC测试失败,以致不能通过相关EMC法规的测试或认证。例如,产品设计研发工程师们根据需求,设计出效果良好的滤波电路,置入产品I/O(输入/输出)接口的前级,可使因传导而进入系统的干扰噪声消除在电路系统的入口处;设计出隔离电路(如变压器隔离和光电隔离等)解决通过电源线、信号线和地线进入电路的传导干扰,同时阻止因公共阻抗、长线传输而引起的干扰;设计出能量吸收回路,从而减少电路、器件吸收的噪声能量;通过选择元器件和合理安排的电路系统,使干扰的影响减少。1、150kHz-1MHz,以差模为主,1MHz-5MHz,差模和共模共同起作用,5MHz 以后基本上是共模。差模干扰的分容性藕合和感性藕合。一般1MHz以上的干扰是共模,低频段是差摸干扰。用一个电阻串个电容后再并到Y电容的引脚上,用示波器测电阻两引脚的电压可以估测共模干扰。3、小功率电源可采用PI型滤波器处理(建议靠近变压器的电解电容可选用较大些)。4、前端的π型EMI零件中差模电感只负责低频EMI,体积别选太大(DR8太大,能用电阻型式或DR6更好)否则幅射不好过,必要时可串磁珠,因为高频会直接飞到前端不会跟着线走。5、传导冷机时在0.15MHz-1MHz超标,热机时就有7dB余量。主要原因是初级BULk电容DF值过大造成的,冷机时ESR比较大,热机时ESR比较小,开关电流在ESR上形成开关电压,它会压在一个电流LN线间流动,这就是差模干扰。解决办法是用ESR低的电解电容或者在两个电解电容之间加一个差模电感。6、测试150kHz总超标的解决方案:加大X电容看一下能不能下来,如果下来了说明是差模干扰。如果没有太大作用那么是共模干扰,或者把电源线在一个大磁环上绕几圈, 下来了说明是共模干扰。如果干扰曲线后面很好,就减小Y电容,看一下布板是否有问题,或者就在前面加磁环。10、共模电感的两边感量不对称,有一边匝数少一匝也可引起传导150kHz-3MHz超标。11、一般传导的产生有两个主要的点:200kHz和20MHz左右,这几个点也体现了电路的性能;200kHz左右主要是漏感产生的尖刺;20MHz左右主要是电路开关的噪声。处理不好变压器会增加大量的辐射,加屏蔽都没用,辐射过不了。13、对于无Y-CAP电源,绕制变压器时先绕初级,再绕辅助绕组并将辅助绕组密绕靠一边,后绕次级。16、在PCB设计时应将共模电感和变压器隔开一点以免互相干扰。18、三线输入的将两根进线接地的Y电容容量从2.2nF减小到471。19、对于有两级滤波的可将后级0.22uFX电容去掉(有时前后X电容会引起震荡) 。20、对于π型滤波电路有一个BUCk电容躺倒放在PCB上且靠近变压器此电容对传导150kHz-2MHz的L通道有干扰,改良方法是将此电容用铜泊包起来屏蔽接到地,或者用一块小的PCB将此电容与变压器和PCB隔开。或者将此电容立起来, 也可以用一个小电容代替。21、对于π型滤波电路有一个BUCk电容躺倒放在PCB上且靠近变压器此电容对传导150kHz-2MHz的L通道有干扰,改良方法是将此电容用一个1uF/400V或者说0.1uF/400V电容代替, 将另外一个电容加大。23、将开关管和散热器用一段铜箔包绕起来,并且铜箔两端短接在一起,再用一根铜线连接到地。26、加大X2电容只能解决150kHz左右的频段,不能解决20MHz以上的频段,只有在电源输入加以一级镍锌铁氧体黑色磁环,电感量约50uH-1mH。30、将辅助绕组供电滤波电容改用瘦长型电解电容或者加大容量。32、150kHz-300kHz和20MHz-30MHz这两处传导都不过,可在共模电路前加一个差模电路。也可以看看接地是否有问题,该接地的地方一定要加强接牢,主板上的地线一定要理顺,不同的地线之间走线一定要顺畅不要互相交错的。33、在整流桥上并电容,当考虑共模成分时,应该邻角并电容,当考虑差模成分时,应该对角并电容。1、设备开关电源的开关回路:骚扰源主频几十kHz到百余kHz,高次谐波可延伸到数十MHz。 2、设备直流电源的整流回路:工频线性电源工频整流噪声频率上限可延伸到数百kHz;开关电源高频整流噪声频率上限可延伸到数十MHz。 3、电动设备直流电机的电刷噪声:噪声频率上限可延伸到数百MHz。 4、电动设备交流电机的运行噪声:高次谐波可延伸到数十MHz。 5、变频调速电路的骚扰发射:开关调速回路骚扰源频率从几十kHz到几十MHz。 6、设备运行状态切换的开关噪声:由机械或电子开关动作产生的噪声频率上限可延伸到数百MHz。7、智能控制设备的晶振及数字电路电磁骚扰:骚扰源主频几十kHz到几十MHz,高次谐波可延伸到数百MHz。 9、电磁感应加热设备的电磁骚扰发射:骚扰源主频几十kHz,高次谐波可延伸到数十MHz。 10电视电声接收设备的高频调谐回路的本振及其谐波:骚扰源主频数十MHz到数百MHz,高次谐波可延伸到数GHz。11、信息技术设备及各类自动控制设备的数字处理电路:骚扰源主频数十MHz到数百MHz(经内部倍频主频可达数GHz),高次谐波可延伸到十几GHz。